
In the present case we have two critical cross-sections j,, = 0.69, cc, = 1.17 in the range 275 

O< c<a, shown in Fig.2 by the dot-dash lines. 
The form of the wing surface with the sweep-back angle of h=n/4 is shown in Fig.3. A 

dot denotes the place where parts of the surface couple with the distributed and constant 
stream functions. Moreover, the figure shows the pressure distribution over the wing surface 
Pb(6), computed using (2.16) (solid line) and the pressure directly behind the shock wave pi 

(the dashed line). 
Note that for certain specified configurations of the shock wave, in addition to the 

sufficient conditions for constructing a smooth wing surface, the equation $)b(c) = 5 also 
holds at one or several points c# 0 , while additional lines of flow (flow-off) appear in 
the field of flow together with the line of flow (flow-off) in the plane of symmetry, just as 
in the case of flow at finite anlges of attack /9, ll/. 
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A VARIATIONAL PRINCIPLE IN THE HYDROMECHANICS OF AN 
ISOTROPICALLY MAGNETIZABLE MEDIUM* 

I.E. TARAPOV 

The ideas expressed in /I/ are used as the basis for formulating a 
variational principle for describing the motion of an isotro$cally 
magnetizable medium. Representations are obtained for the velocity field, 
magnetic field and enthalpy written in terms of the Lagrange multipliers. 
New integrals of the equation of motion are derived. 

The system of equations describing the non-relativistic motion of perfect magnetizable 
media can be written in the form /2/ (M is the magnetization of the medium) 

g+divpv=O, -+$(s+s')=o 

divB=O, $--rot[v,B]=O 

dv 
p dt 

-=-vp- V$(P) +MVR + &[rotH,B] 

(1) 

*Prikl.Matem.Mekhan.,48,3,383-387,1984 
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p=p(ptS), M= -$(B-HH) = -& (p (p, T, H) - 1) H 

w=qp~$(+)dL-g + &_(P__ppp)HdH 

K 
0 

,.=&~p&?dX. + 
PT = a 

Using the relations 
form ( w is the enthalpy 

TW = d.w - dplp, we can rewrite the equations of motion of (1) in the 
of the system) 

+[V,rOtY]=-V 
( g+N- 

+P) _ g(T) 
P )+ (2) 

TVS’+&-[rot$,Bl 

u=_U +$, (P(T), -‘sk$-($) dR 
0 

We shall show that the equation of motion of the medium can be obtained from the varia- 
tional principle, provided that the remaining equations of (1) are regarded as constraints 
imposed on the independent variations 6p, 6S, 8v, 6B. We cannot formulate the variational 
principle under these conditions without Introducing additional constraints, and this can be 
proved in a manner similar to that used in /3/ for the case of a neutral medium. In the 
present case the variational principle can be written using Lagrange multipliers ~,, . . . . I.,, 1, 
in the form 

6 1 [$-pU' + &($ i- divpv) + AI (-$W') + divW'v))+ 
R 

Its (& @a) + div @a~)) + XI div B -I- 

(3) 

J.6 l ( 
+-rot [v, B])] dR= 0 

U’ = u (p, S) + U’, U*+__.&Z!p 

Here a = a(r, t) is an arbitrary Lagrangian coordinate of the system, so that duldt = 0, U’ 
is the total internal energy and U' is the internal energy of the system determined by the 
magnetic field. 

We assume in the variational principle (3) that the independent variations 6P,6S,bv, 6B 
vanish at the boundary of the four-dimensional volume R (dR =da?dt). 

Computations show that any functions of position and time can be used as the Lagrangian 
multipliers &&,& in (3), and specified constraints are imposed on 'I., and X3 . The 
constraints ensure that the equation of motion (2) are satisfied by the expressions for v,B 
and the thermodynamic quantities (or for p when the medium is incompressible) given in terms 
of the Lagrange multipliers, and the expressions follow directly from the variational principle 

(3). 
Indeed, varying (3) and equating to zero the coefficients of the independent variations 

6h,, . . ., Sk,, 6L,, we obtain (by virtue of daldt = 0) the first four equations of system (1). 
Equating to zero the coefficients of the variations 6v,6B, 6S and 6p we obtain, one after the 
other, 

v = Vh, + S’V& + a& + % [B, rot I.61 

-j& =; - + + [v, rot’lb] - VA, 

(l+Ss’,(T+-+)=O 

vl d& 
W=T-dl- 

s, & 4 ,pW) _ q,(T) 
dl- adt- P 

The last expression can be written, by virtue of (4), in the form 

w=-+S+-a~_ 
g@) _r$T' 

P 
"a + -T $ v . [B, rot Ius] 

Since generally speaking 

ss%..&(&{prlldH)#-I 
0 

(4) 

(5i 

(6) 

(7) 

(0) 
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therefore it follows from (6) that the following constraint must be imposed on h, : 

&I& = -T (9) 

Now we can show that if we also assume that 

&ha = 0 (10) 

then the equation of motion (2) will be satisfied provided that v, H and w have the repre- 

sentations (4), (5) and (7). 
Indeed, using (4) we can write (2) in the form 

(11) 

BY virtue of the equations dS’ldt = 0, daldt = 0 and (9), (10) and (7), the last expression 
yields 

or 

hzf -- 
al [v, rot va] - & [ rot+, B1 + V(v.va)==O 

(12) 

(rot X5 ss a, Bl(4xp) = b) 

From (5) we obtain 

pb rot-=--_+rot[v,a] 
P 

and by virtue of the induction equation and the equation divB = 0, we have 

$=rot[v,b]+bdivv -vdivb 

Then (12) can be written in the form 

[a, rot [b, v]] + [b, rot [v, a]] + [v, rot [a, b]] = [a, b] div v + [v, a] div b + V ([a, b]*v) (13) 

Using the formulas of vector analysis we can show that (13) is an identity. 
Thus the equation of motion (2) is satisfied by the representations (41, (5) and (7) for 

any h,,h,,& and h,,hr satisfying (9) and (10). This implies that under the constraints 
formulated above and imposed on the independent variations &I, ijS, 6v, m and Lagrange multi- 
pliers h, and As, the variational principle (3) is equivalent to the system of equations of 
motion (1). 

Bearing in mind the practical applications of the variational principle, we can formulate 
(3) in a different manner, with the Lagrangian acquiring an interesting physical interpreta- 
tion. 

We shall assume that the variations of the Lagrangian multipliers also vanish at the 
boundary of the volume R. Then, integrating the expressions in (3) by parts, we obtain the 
Lagrangian in the form 

Taking (5), (7), (9) into account and the expression for TJ' = u + u@, we obtain 

L=P + ~+¶pp,-p+p*=p~ 

where p’ denotes part of the pressure depending exclusively on the magnetic field. 
Thus the variational principle can be written in the form 

6~p’(w,S,H)dR=O (P’ = P (w, S) + P’) 
R 

(14) 

where the total pressure p' in the medium must be regarded as a function of UI, S and H, and 
the representations (71, (6) and (5) with the constraints (9) and (10) must be used in carrying 
out the variation. 

When p = const , we have L = p + Bz/@n) and without the field the Lagrangian simply becomes 
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equal to the pressure, as shown in /l/ for the case of standard hydromechanics. 
The form (14) represents a simple physical interpretation of the variational 

Obviously, it is simpler to take p, S and H as the basic variables. Then, using 
(a), we can write (14) in the form 

which is more suitable 
In the case of an 

v=Vh 1 + S'VX2 + a& + + [rot hs, H] 

for computations. 
incompressible fluid (dpldt = 0, divv = 0) we must omit from (1) 

equations of state p =p(p,S) and entropy S, and replace the enthalpy w by p/p. 
Thus, the variational principle in the form (15) becomes 

6S[p(~+S’~+a~)+~+yv.[H,rotLI]- 
R 

H 

&j (p-TTpr)HdH}dA=O 
0 

v = VA1 f S’V4 + aVA., - G[H, rot lLIJ, P-P@, T,W 
H 

S’s& S]pTHdH, ++=O, +_T, 6p=O 
0 

for the incompressible fluid. When p = 1 , (15) yields the following var 
for the magnetohydrodynamics of a non-magnetizable compressible medium: 

.ational 

principle. 

expression 

(15) 

the 

(16) 

principle 

and in the case of an incompressible fluid (&p = 0) we have 

khen H = 0, the formulations (3) and (16) yield the expresions given in /l/, and for 

P=l, (3) yields an expression obtained in /4/ where the additional assumption that a = 0 
was made. 

Following /5/ we note, that the equations of motion of a perfect magnetizable medium can 
be written in the form resembling the Hamiltonian form of the equations of motion of a system 
of material points. 

By virtue of the above arguments, expression (12) represents an identity, and, therefore, 
the equation of motion (11) can be written in the form 

The above expression presupposes only the representation 

v=vVhl+SVk~+&Vks+vHV vH= $[B, rot Lb] 

Let us now assume that dkJdt = -T. Then, writing 

we obtain from (17) 

(17) 

(10) 

If we now write v in the form (18) where h,(r, t), a(C, t), h,(r. t) are such that 



279 

da & =o dh? 
dl=d2 ’ 

x=-T 

then from (17) we obtain the integral of the equation of motion 

h = f(1) (13) 

III the case of standard gas dynamics the integral becomes 

$+w+ ++s++uJ+f(t) (20) 

while in the case of magnetohydrodynamics (p = 1) we have 

$+~+++++a% -+[H,mih,]=f(t) (21) 

we note that the integrals (19)-(21) also exist for the vertical flow (rot Y # O), where 
the orientation of the field Hrelative to the stream lines is arbitrary. The determination 
of hr, . ., b6 in (4) and (5) is essential. It is clear that the form of these potentials is 
not defined uniquely. 

In the case of an irrotational motion (v = Vhl) (20) yields the usual Lagrange integral. 
Finally, we note that in the case ofstationarymotion along the stream lines a generalized 
Bernoulli integral 

-$ + VJ + @';'(r) - $ v. [H, rot hS]-const 

exists, where the constant depends, in general, on the stream line and the orientation of the 
field H is arbitrary. This implies that when VII H , then the last term on the left-hand 
side vanishes, while-when v J_ H, the term becomes BHI(4np) by virtue of (5) (in complete 
agreement with the results known in magnetohydrodynamics). 

1. 

2. 

3. 

4. 
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